STF3NK80Z

491987.jpgИзображение дано только в качестве иллюстрации. Ознакомьтесь c описанием продукта. Сообщить об ошибке.Доступно780 шт.Срок поставки5-15 рабочих днейЦенавключает НДСПроизводительSTMICROELECTRONICSКоличествоЦена ₽/шт

  • 1+306.66
  • 10+227.22
  • 100+170.02
  • 500+144.75
  • 1000+115.99

Оплата онлайн или безналичный расчет

STF3NK80Z характеристики

Силовой МОП-транзистор, N Канал, 2.5 А, 800 В, 4.5 Ом, 10 В, 3.75 В.

Полярность Транзистора N Канал
Непрерывный Ток Стока 2.5А
Напряжение Истока-стока Vds 800В
Сопротивление во Включенном Состоянии Rds(on) 4.5Ом
Напряжение Измерения Rds(on) 10В
Пороговое Напряжение Vgs 3.75В
Рассеиваемая Мощность 25Вт
Стиль Корпуса Транзистора TO-220FP
Количество Выводов 3вывод(-ов)
Максимальная Рабочая Температура 150°C
Линия Продукции
SVHC (Особо Опасные Вещества) No SVHC (17-Dec-2015)
Уровень Чувствительности к Влажности (MSL)

Техническое описание

  • STF3NK80Z скачатьPdf, 880.5 KB

Вы можете купить STF3NK80Z от 1 штуки. Работаем с частными лицами и с юридическими лицами по безналичному расчету.

Доступно на складе 780 штук. Цена STF3NK80Z зависит от объёма заказа, минимальная стоимость составляет 115.99 руб.

  • Архив даташитов

Сопутствующие товарыMK3306MULTICOMPТермоизолятор, комплект изоляции, слюда, TO-220, Слюда, 1 кВ, 0.1 ммMK3311MULTICOMPМонтажный комплект, винт M3, гайка, две шайбы, корпусы TO-220, TO-126, SOT-93EYGA121807APANASONIC ELECTRONIC COMPONENTSPYROLYT GRAPHITE INTERFACE SHEET PGSEYGA091203SMPANASONIC ELECTRONIC COMPONENTSPYROLYT GRAPHITE INTERFACE SHEET PGS Импульсные блоки питания – устройство и ремонт –>

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие.  Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще – для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары – крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал.  Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное – есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Не смогли починить БП? Обращайтесь в Комплэйс.

Устройство китайских зарядок для ноутбуков описано здесь.

Еще посетители читают про: 

  • ремонт ноутбуков
  • починка принтеров
  • проблемы тачпада с совместимыми блоками питания ноутбуков.

$5.92Перейти в магазин Понадобился мне для одного из проектов мощный понижающий преобразователь напряжения и решил я его перед применением немного протестировать.Небольшой осмотр, тесты, выводы.На самом деле задача у меня была получить ток до 40А при напряжении 4.8-5 вольт, причем нагрузку можно разделять и можно использовать 2 преобразователя по 20А. Но рисковать заказывая сразу пару не очень хотелось и решил взять для начала на пробу один.К слову, вообще это уже второй такой заказанный преобразователь, некоторое время я уже пытался его заказать, но прислали менее мощную модель и самое обидное то, что заметил я это уже когда прошли все сроки защит. Пришлось повторить заказ, но уже в другом магазине.Упаковка простейшая, конверт и антистатический пакет, преобразователь компактный, размеры 60х52х28мм.Заявленные параметры (со страницы товара)Входное напряжение: от 6 В до 40 В постоянного тока (от 10 В до 40 в предлагается)Выходное напряжение: 1,2 В до 36 В постоянного токаВыходной ток: 20А (макс.), 15А (рекомендуется)Эффективность: 95% (24В до 12В, 20А)Выходная пульсация: ≤ 50 мВСпособ подключения: терминалЗащита от короткого замыкания: самовосстановление (не может долгое замыкание)Размер: 60x53x27 мм/2,36×2,08×1,06″Внешне выглядит относительно аккуратно, ничего не болтается, не висит, радиаторы прикручены небольшими винтиками, а не висят на выводах компонентов. Есть четыре крепежных отверстия.

1. Со стороны входа имеется винтовой клемник, выключатель и светодиод индикации включения. Выключатель коммутирует сигнал управления ШИМ контроллером, клемник так себе, какой-то “жиденький”2. Со стороны выхода такой же терминал, рядом два подстроечных резистора для установки выходного напряжения и ограничения тока.3. Входные конденсаторы 2шт 470мкФ 50 вольт4. Выходные конденсаторы 3шт 270мкФ 35 вольт с закосом “под фирму”, хотя вполне может статься что и оригинал, сложно так сказать.5, 6. Преобразователь с синхронным выпрямлением, соответственно на радиаторах установлены два полевых транзистора, а не транзистор + диодная сборка. Транзисторы одинаковые – NCE8290, N-канальные, 82В 90А 8.5мОм, что в принципе даже неплохо.Компоновка не сильно плотная, но тем не менее, не очень удачная, конденсаторы стоят впритирку к силовому дросселю, который в работе обычно довольно сильно греется.ШИМ контроллер, операционный усилитель, шунт и остальная мелочь находится снизу платы.Справа вверху виден ШИМ контроллер – LM25116, ниже шунт 4мОм и ОУ для усиления сигнала с него – LM321Из ключевых особенностей ШИМ контроллера – синхронное выпрямление, встроенный драйвер с током до 3.5А, питание до 42 вольта, настраиваемое ограничение тока и выходное напряжение в диапазоне 1.21-36 вольт.Если коротко, весьма интересный контроллер.В даташите имеется схема типового включения, но собственно здесь ничего необычного, виден как контроллер, так и силовые транзисторы, а также токоизмерительный шунт. Отмечу что в даташите есть два примера включения и в обоих контроллер и силовая часть питаются от разных источников, у обозреваемого преобразователя источник один, что также допускается, но диапазон входного напряжения при этом ограничен максимальным для контроллера, т.е. 42 вольта.В реальности с выходным напряжением все немного похуже.1, 2. Если минимальное в общем-то соответствует заявленному, хотя без нагрузки и болтается в диапазоне примерно 1.24-1.45 вольта.3. То вот максимально я смог получить только 30 вольт.4. При том что на входе было установлены максимально заявленные в описании 40 вольт, так что это не ограничение из-за входного напряжения, а не совсем корректно рассчитанный делитель обратной связи.Потребление вы выключенном состоянии практически нулевое. Во включенном, но без нагрузки в диапазоне 12-24 вольта ток около 20мА, но при входных 36 заметно поднимается и составляет уже 60мА. Измерение в данном случае грубое, но не думаю что это критично.Ограничение тока работает, но минимум можно выставить только около 700мА, максимум что смог проверить, 12.2А, выше не стал поднимать, предохранители к мультиметру стоят дорого. При некоторых значениях тока преобразователь тихонько пищал.Далее шла проверка точности поддержания напряжения при токах нагрузки от 5 до 20А. Для начала выставил на выходе 5 вольт.И затем измерил выходное напряжение при токах 5, 10, 15 и 20А. Мультиметр был подключен к проводникам печатной платы под клеммником.В диапазоне токов 0-20А просадка напряжения составила 0.12 вольта. Не скажу что это плохо, но при малых выходных напряжениях уже заметно.Такая же проверка, но при выходном 12 вольт, входное было 24 вольта.Сначала без нагрузкиЗатем при токах 5, 10, 15 и 20А.Имеем ту же разницу в 0.12 вольта, предположу что имеется проблема с корректностью разводки печатной платы.Пока гонял преобразователь в разных режимах и делал фото для обзора, заметил что появился нагрев и был удивлен что температура довольно высокая, хотя не сказал бы что предварительные тесты заняли много времени.Кроме того, обратил внимание на заметную зависимость КПД от входного напряжения, а точнее, от разницы вход/выход.Для примера на входе 12 вольт, на выходе 5 вольт и ток 20А, при этом преобразователь потребляет 114.5Вт.При 24 вольта по входу уже 117.3Вт, а если поднять входное до 36 вольт, то еще больше, 121.6Вт.Т.е. при выходном 5 вольт 20А и изменении входного напряжения в диапазоне 12-36 вольт имеем от 114.5 до 121.6Вт.В моем случае входное будет 10-14 вольт, потому все нормально, но возможно кому-то будет критично.КПД измерялся в нескольких режимах, ниже три графика для выходного 5 вольт и входного 12, 24 и 36 вольт, по горизонтали ток нагрузки от 2.5 до 20А кратно 2.5А.Результаты довольно грубые так как входная мощность оценивалась по показаниям блока питания, а значит влияло падение на проводах от него к преобразователю, думаю реально КПД примерно на 1% выше.Здесь также три графика, но в других режимах, пара с выходным 12 вольт и входным 24 и 36 вольт, а также вариант с выходным 24 вольта и входным 36 вольт (верхний график).Отмечу что в тесте 36-24 вольта был ток нагрузки 15А и соответственно выходная мощность почти 360Вт при максимальной заявленной 300Вт.Как я писал ранее, преобразователь ощутимо греется, для проверки я провел тест при выходном напряжении 5 вольт, входном 12 вольт и токах нагрузки 10 и 15А. Отмечу что этот один из наиболее оптимальных режимов, в других нагрев может быть еще больше.1. На момент начала теста преобразователь был уже немного прогрет.2. Через 20 минут при токе 10А нагрев в пределах нормы.3. Еще через 20 минут при токе 15А нагрев стал более заметным, максимальную температуру имел входной транзистор – 106 градусов. По результатам теста рекомендую либо ограничивать выходной ток, либо подумать об активном охлаждении.Пульсации.В общих чертах очень даже неплохо, я как-то ожидал худшего.Выходное напряжение 5 вольт, входное 12.1. Без нагрузки2, 3, 4. При токах 5, 10 и 20АНа самом деле в спектре пульсаций присутствовали “иголки”, но так как тест производился с насадкой на измерительный щуп (1мкФ+0.1мкФ), то их не видно.Ниже осциллограмма с прямым включением щупа при токе 20А и соотношении вход выход 12-5.Те же токи нагрузки, 5, 10 и 20А, но соотношение вход/выход другое, слева 30-5 вольт, справа 24-12 вольт.Если присмотреться к вышеприведенным осциллограммам, то думаю можно заметить что “горизонт завален”, т.е. каждый последующий импульс выше или ниже предыдущего.Меня заинтересовал этот момент и я увеличил время развертки в итоге получив такую вот не очень приятную картинку. Видно что общий размах пульсаций около 80мВ, проявляется такое при выходном напряжении 12 вольт и выше, а также при токах около 15А и более, нижняя осциллограмма сделана при выходном напряжении 12 вольт, входном 24 вольта и токе 15А.Под конец обзора сравнительное фото других преобразователей в том же формфакторе, посередине повышающий, справа понижающий, но на 10А. Думаю также написать небольшие обзоры, если кому-то интересно.В качестве итогов скажу, что в общих чертах преобразователь работает, но есть довольно много замечаний.1. Нагрев, более 15А с него длительно не снять без дополнительного охлаждения, но это указано в описании. Но даже 15А это уже работа близко к предельным значениям, особенно при большой разнице вход/выход.2. Регулировка тока только от 0.7А3. Выходное напряжение до 30 вольт при заявленных 36.4. Входные конденсаторы низкого качества.5. Клемники хилые, особенно под заявленные 20А.Если коротко, то производитель взял в общем-то неплохую элементную базу, но в итоге получил средненький преобразователь, думаю что часть проблем кроется в ошибках трассировки. Использовать вполне можно, в какой-то степени он мне даже понравился, но над охлаждением стоит подумать.На этом пока все, надеюсь что было полезно. $5.92Перейти в магазинЭту страницу нашли, когда искали: c1093 применение, 9915h характеристики на русском, str z2756 datasheet, b3171v datasheet на русском, lm25116 datasheet на русском, ctl22s аналог, sp2635f в даташит, str2124 характеристики, k3505 транзистор характеристики, lm29010, nce6075k чем заменить, f6454 характеристики на русском, 20f001n datasheet на русском, lm25116 рабочая температура, nce8580 характеристики на русском языке, str z2756 схема подключения, c3271n характеристики на русском, k2003 транзистор характеристики, ctl22s характеристики на русском аналог, nce82h140, м. сх. цсц7203 характеристики на русском, str50103 схема включения, nce8290 cfp2, транзистор c5440 характеристики и его применение, nce8290 характеристики транзистор

Вас может заинтересовать

Комментарии: 4

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий