Как проверить симистор вта16 600в мультиметром

Полупроводниковые элементы получили широкое применение в радиоэлектронике при создании различных устройств. Одним из самых простых полупроводников является диод, но при заметном росте научного прогресса стали расширяться области применения полупроводниковых приборов.

Симистор — полупроводниковый прибор, получивший широкое применение в изготовлении техники и различных бытовых приборов с электронным управлением.

Принципы работы и виды симисторов

Симистор, или триак, — это один из подвидов тиристоров, отличающийся большим количеством p-n переходов, и применяется для схем устройств, имеющих электронное управление.

Для понимания принципа работы симистора необходимо ознакомиться с простыми полупроводниковыми устройствами. Начать необходимо с простого и постепенно перейти к более сложному.

Полупроводниковый диод является простейшим полупроводниковым прибором, состоящим из одного p-n перехода. Выводы диода называются анодом и катодом.

При подключении полупроводникового элемента в цепь электрический ток проходит через катод и воздействует на него. Из курса физики известно, что ток, проходящий через проводник, оказывает на него тепловое действие. После нагрева катод начинает испускать электроны (электрон имеет отрицательный заряд). Анод обладает положительным потенциалом и начинает притягивать отрицательно заряженные частицы (электроны) к себе. Вследствие этого явления образуется эмиссионное поле, служащее причиной возникновения тока. Этот ток называется эмиссионным током.

Между анодом и катодом происходит генерация пространственного заряда с отрицательной составляющей, который мешает движению электронов к аноду. Если положительный заряд на аноде очень мал, то электроны не могут преодолеть генерируемое поле и часть из них возвращается к катоду (катодный ток). Все электроны, достигшие анода, определяют параметр анодного тока. Этот показатель напрямую зависит от потенциала на аноде.

В некоторых случая анодный или катодный токи могут быть равны нулю, что свидетельствует об отрицательном потенциале анода и положительном заряде катода соответственно (радиодеталь находиться в запертом состоянии). Для подробного понимания принципа работы диода необходимо знать его устройство.

Катод и анод называют еще кристаллом n-p типа. Этот кристалл изготавливается преимущественно из кремния или германия. Одна из его частей имеет проводимость по p-типу (имеет искусственный недостаток электронов), а другая имеет избыток электронов с проводимостью по n-типу. Между кристаллами имеется граница (p-n переход). Благодаря такой конструкции ток через диод может пройти только в одном направлении.

Основным отличием симистора от тиристора является иллюстрация примера с обыкновенной дверью. Дверь открывается — ток проходит, а закрывается — он не может пройти. Дверь может быть либо закрыта, либо открыта. Ток тиристора проходит только в одном направлении. При наличии у полупроводникового прибора пяти p-n переходов и управляющего электрода (УЭ), он способен пропускать ток в двух направлениях (прямом и обратном).

Структурная схема симистора:

Полупроводниковые слои симистора напоминают переход транзистора (p-n-p), но имеют 3-и дополнительные n-области проводимости. Расположенные области у катода и анода и есть 4-й слой полупроводникового слоя. Пятая область слоя находится возле УЭ. Работа симистора основана на более сложных процессах, чем у тиристора. Разделение 4-ого слоя симистора не является случайным и при направлении движения токав одном направлении анод и катод выполняют определенные свои функции.

Если происходит обратное направление, то они меняются местами. Симистор представляет собой 2 тиристора, которыевключены встречно и параллельно:

На УЭ подается сигнал, который называется отпирающим. Если анод прибора имеет положительный потенциал, а катод — отрицательный, ток течет согласно рисунку 2 через левый тиристор. Если полярность напряжения или разности потенциалов поменять, то включится в работу правый тиристор. Управляющий электрод (5 полупроводниковый слой) направляет сигнал управления в зависимости от тока и его фазы на соответствующий тиристор. Еще один пример вращающейся двери, которая применяется на предприятиях. Она открывается в любую сторону. Это подтверждено вольт-амперной характеристикой (ВАХ) симистора:

ВАХ, состоящая из двух кривых, которые повернуты на 180 градусов. Их форма похожа на ВАХ динистора с областью, легко преодолеваемой при подаче отпирающего напряжения на управляющий электрод. Именно из-за симметричной ВАХ он и получил название СИМИСТОР.

Обозначения на ВАХ: А и В — закрытое и открытое состояния соответственно; Udrm (Uпр) и Urrm (Uоб) — максимальное допустимое значение напряжение при прямом и обратном включениях соответственно; Idrm (Iпр) и Irrm (Iоб) — прямой и обратный токи.

Главным достоинством симистора необходимо считать его конструктивную особенность, а именно, в корпусе расположили 2 тиристора. Это позволяет управлять цепью переменного и постоянного тока. Один тиристор может управлять цепью постоянного тока. Для управления цепями напряжения переменного тока необходимо 2 тиристора и отдельный источник для каждого прибора. Это не слишком удобно, но главный минус — тиристоры будут работать только наполовину мощности. Сфера применения симметричных тиристоров разнообразна:

  1. Диммеры (регулировка освещения).
  2. Различный строительный инструмент (дрели, перфораторы и так далее).
  3. Нагреватели на электрической основе с регулировкой (плиты и печи).
  4. Компрессоры, применяемые в кондиционерах и холодильниках.
  5. Бытовая техника (пылесос, фен, стиральная машинка и другие).
  6. В промышленности разных отраслей (освещение, плавный запуск двигателей и так далее).
  7. Усовершенствование бытовых приборов (чайник).

Достоинства и недостатки триаков

Нужно отметить, что симистор является видом тиристора, следовательно, основным отличием являются параметры УЭ. Триаки классифицируются по видам и отличия состоят в различном исполнении и характеристиках:

  1. Конструктивное исполнение (распиновка, цоколевка).
  2. Ток перегрузки.
  3. Параметры управляющего электрода.
  4. Прямые и обратные токи и напряжения (600bw и 600е — на напряжение 600 В).
  5. Электрической нагрузке: силовые и обыкновенные (bta06, ку202г).
  6. Ток затвора.
  7. Скорость переключения (dv/dt).
  8. Изготовитель: импортные не требуют предварительно настройки, отечественные нужно настраивать путем внедрения в схему дополнительных элементов.
  9. Уровень изоляции корпуса (bta16).
  10. Мощность (btb16).

К основным достоинствам симметричных тиристоров нужно отнести следующие: низкая стоимость, длительный срок применения, не издают помехи (нет механических контактов), надежность.

Недостатки триаков: использование радиатора для отвода тепла, влияние шумов и различного рода помех, невозможность использования при высоких частотах переключения.

Для избежания влияния помех необходимо производить шунтирование прибора RC-цепью:

Величина сопротивления резистора должна быть от 50 до 470 Ом, а емкость конденсатора необходимо подобрать от 0,01 до 0,1 мкФ. Эти величины подбираются в зависимости от характеристик триака или экспериментальным путем.

Основные характеристики

Симисторы бывают отечественные и импортные, следовательно, для понимания сферы применения нужно рассмотреть его основные характеристики на примере КУ208Г (аналог КУ202Н). Этот вид до сих пор применяется в радиоэлектронике и, благодаря его отличным характеристикам и низкой цене, его можно использовать практически во всех устройствах с регулируемыми параметрами в качестве основного или аналога импортным моделям.Основные характеристики:

  1. Максимальное обратное и импульсное напряжения: 400 В (применение в сети 220 В).
  2. Максимальный ток открытого состояния в нормальном и импульсных режимах работы: 5А и 10 А соответственно.
  3. Минимальный ток открытия: 300 мА при 2,5 В.
  4. Значение минимального импульсного тока: 160 мА при 5 В.
  5. Время включения и отключения: 10 мкс и 150 мкс соответственно.

Читайте также:  Насечка у напильника бывает

Необходимо учесть и длину провода, идущего к УЭ, которая должна быть минимальной. Шунтирование производится между выводом Т1 и управляющим электродом (схема 1).

Среди достойных импортных аналогов можно выделить симисторы с изолируемым корпусом фирмы ON Semiconductor. Диапазон максимальных токов от 0,6 А до 16 А. Благодаря управлению от низковольтных логических выходов они применяются в более сложных устройствах с микроконтроллерами.

Мощные и высоковольтные симисторы: 600bw, acs1086s, вт136, z3m, bt134, 700bw, 600e, bta08, bt137, 800cw, вта41600в, zo607, вта16, вт134, вт137, 600c, btb12, z7m, m2lz47.

Одной из разновидностей симистора является его перспективная модель, называемая оптосимистором. В корпусе этого прибора находится не управляющий вывод, а светодиод. Управление осуществляется при изменении значения напряжения на светодиоде.

Выводы N/C и NC не задействуются в различных схемах подключения. Между управлением и силовой частью осуществляется полная гальваническая развязка, благодаря чему и происходит повышение электрической безопасности и надежности.

Одной из значимых характеристик является dv/dt. Она показывает максимально допустимую величину, благодаря которой самопроизвольное включение триака не происходит. Существенный недостаток симистора является возникновение эффекта dv/dt, возникающий при высокой скорости изменения коммутируемого напряжения. Представляет собой самопроизвольное включение триака. Для устранения этого недостатка применяют демпфирующую RC-цепочку, параллельную выходу каскада (ключевой). Схема с переключением по нулевому уровню и защитой:

Причины эффекта dv/dt: импульсные помехи или выбросы U (напряжения) при коммутации ключа.

Нужно обратить внимание на работу симистора при активной и индуктивных нагрузках. При активной ток, протекающий через триак, совпадает по фазе с напряжением на выходе. При индуктивной эта разница равна определенному значению:

Из-за этого коэффициента напряжение в моменты переключение не равно 0 (причина возникновения выбросов напряжения). При этом даже при выключенном триаке, который работает на индуктивную нагрузку, возможно превышение dv/dt и прибор может выйти из строя. В целях безопасности необходимо применять RC-цепочку, варистор, защитные ограничительные диоды.

Проверка в схемах

Очень часто при выходе из строя какого-либо устройства необходимо прозвонить элементы всей схемы на исправность и при необходимости заменить. Необязательно выпаивать симистор из схемы. Алгоритм похож на проверку тиристора мультиметром.

Как проверить тиристор ку202н мультиметром: для этого необходимо освободить управляющий электрод. Как проверить симистор мультиметром не выпаивая: достаточно освободить управляющий электрод и произвести измерения мультиметром. Алгоритмы проверок идентичны, но такой способ неточен. Для проверки симистора нельзя использовать обыкновенный мультиметр, так как ток измерительного прибора не сможет открыть триак. Существуют такие варианты проверки полупроводникового симметричного тиристора:

  1. Применение стрелочного тестера или омметра, потому что их сила тока способна открыть симистор.
  2. Собрать специальную схему для проверки.

При наличии стрелочного омметра проверить триак не так уж сложно. Нужно найти справочную информацию о соответствующем симисторе. Примерный алгоритм проверки:

  1. Подключить щупы прибора к T1 и T2.
  2. Установить кратность на измерительном приборе х1.
  3. При бесконечном сопротивлении деталь исправна, а при коротком или каким-либо показаниям — пробита.
  4. При положительном результате пункта 3 соединить выводы Т2 и управляющий и сопротивление падает до 20-90 Ом.
  5. Сменить полярность прибора (поменять измерительные щупы местами) и повторить пункты 3 и 4.

Но этот метод не всегда дает точный результат. Для точного определения работоспособности детали нужно применить специальные схемы проверки. Самый простой способ использовать лампу накаливания и батарейку:

Для профессиональной проверки симистора нужно использовать схему:

Перечень деталей схемы: трансформатор с двумя независимыми обмотками на 12 В; резистор R1 на 51 Ом; конденсаторы С1 и С2: 1000 мк на 16 В; диоды 1N4007 или любой аналог и лампа накаливания: 12 В и 0,5 А.

Для проверки триака установить переключатели согласно схеме; нажать на SB1 и триак открывается (загорается лампа); нажать SB2 и лампа должна погаснуть (симистор закрылся); изменить режим SA1 и нажать SB1 при этом лампа загорается; произвести переключение SA2 и нажать SB1 и, затем изменить положение SA2 и повторно нажать SB1 — индикатор включится при попадании минуса на затвор.

Симисторы широко применяются в регулируемых устройствах. В случае выхода из строя триак достаточно легко проверить при помощи стрелочного омметра или тестера, но этот метод менее точен. Для более точного выявления неисправного прибора необходимо проверить его работу в схеме, которую несложно собрать своими руками.

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

Читайте также:  Конструкционные легированные стали гост

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

Читайте также:  Какой плуг лучше для мотоблока

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий