TL494CN: схема включения преобразователя, описание на русском

Генератор импульсов используется для лабораторных исследований при разработке и наладке электронных устройств. Генератор работает в диапазоне напряжений от 7 до 41 вольта ивысокой нагрузочной способностью зависящей от выходного транзистора. Амплитуда выходных импульсов может быть равна значению питающего напряжения микросхемы, вплоть до предельного значения напряжения питания этой микросхемы +41 В. Его основа – известная всем, часто используемая в.

Аналогами TL494 являются микросхемы KA7500 и её отечественный клон – КР1114ЕУ4 .

Предельные значения параметров:

Принципиальная схема устройства

3717698c0b.jpg

Схема генератора прямоугольных импульсов

Печатная плата генератора на TL494 и другие файлы находятся в отдельном.

screen198d4102.jpg

Регулировка частоты осуществляется переключателем S2 (грубо) и резистором RV1 (плавно), скважность регулируется резистором RV2. Переключатель SA1 изменяет режимы работы генератора с синфазного (однотактный) на противофазный (двухтактный). Резистором R3 подбирается наиболее оптимальный перекрываемый диапазон частот, диапазон регулировки скважности можно подобрать резисторами R1, R2.

88d97b5f1ead195c3564110d1e23bb7.jpg

Детали генератора импульсов

Конденсаторы С1-С4 времязадающей цепи выбираются под необходимый частотный диапазон и емкость их может быть от 10 микрофарад для инфранизкого поддиапазона до 1000 пикофарад – для наиболее высокочастотного.

b9955946b5.jpg

  • Читайте: “Как сделать из компьютерного”.

Транзисторы подбираются любые ВЧ с небольшим напряжением насыщения и достаточным запасом по току. Например КТ972+973. В случае отсутствия нужды в мощных выходах, комплементарный повторитель можно исключить. За неимением второго построечного резистора на 20 kOm, были применены два постоянных резистора на 10 kOm, обеспечивающих скважность в пределах 50%. Автор проекта – Александр Терентьев.

Общее описание и использование

TL 494 и ее последующие версии – наиболее часто применяемая микросхема для построения двухтакных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) – ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN – корпус DIP16, -25..85С, TL 494 CN – DIP16, 0..70C).
  • К1006ЕУ4 – отечественный аналог TL494
  • TL594 – аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 – аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал – обобщение на тему оригинального техдока Texas Instruments , публикаций International Rectifier (“Силовые полупроводниковые приборы International Rectifier”, Воронеж, 1999) и Motorola.

Достоинства и недостатки данной микросхемы:

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (некритично в автомобильных ПН)
  • Минус: Cинронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности микросхем TL494

Цепи ИОНа и защиты от недонапряжения питания . Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого “стабилизатора” напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0…+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания – в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или – замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера – время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки – фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений – от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор – например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше – логическое И сигналов нормальных состояний).

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей – фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз – разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами – При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) – разрешается выход схемы. При сбросе генератора из максимума в ноль – выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 – подаются парафазно на каждый выход порознь.

Выходные транзисторы – npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) – 1.5В (типовое при 200 мА), а в схеме с общим эмиттером – чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл – 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).

Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана – см. “Блок питания усилителя Jensen”). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС – заперт диод, транзистор открывается и разряжает затвор на землю. Минус – работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды – любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. “Земля” повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать – зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор – IRFI1010N – имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтоб обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение – индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) – миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не “земляной” провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада – в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).

В правой части схемы – два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это “мягкий старт”. При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки – ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 – не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) – но это именно выключение, а не плавное ограничение.

Генератор на TL494 с регулировкой частоты и скважности

Очень полезным устройством при проведении экспериментов и настроечных работ является генератор частоты. Требования к нему невелики, нужны лишь:

  • регулировка частоты (периода следования импульсов)
  • регулировка скважности (коэффициент заполнения, длина импульсов)
  • широкий диапазон

Этим требованиям вполне удовлетворяет схема генератора на известной и распространённой микросхеме TL494. Её и многие другие детали для этой схемы можно найти в ненужном компьютерном блоке питания. Генератор имеет силовой выход и возможность раздельного питания логической и силовой частей. Логическую часть схемы можно запитать и от силовой, также её можно питать от переменного напряжения (на схеме имеется выпрямитель).

Диапазон регулировки частоты генератора чрезвычайно высок – от десятков герц до 500 кГц, а в некоторых случаях – и до 1 МГц, зависит от микросхемы, у разных производителей разные реальные значения максимальной частоты, которую можно “выжать”.

img735-607x356.jpgПерейдём к описанию схемы:

Органы управления:

Ct, нФ:
R2, кОм:
Rt, кОм:

Несколько слов о работе схемы. Подачей низкого уровня на 13 вывод микросхемы (output control) она переведена в однотактный режим. Нижний по схеме транзистор микросхемы нагружен на резистор R3 для создания выхода для подключения к генератору измерителя частоты (частотометра). Верхний же транзистор микросхемы управляет драйвером на комплиментарной паре транзисторов S8050 и S8550, задача которого – управлять затвором силового выходного транзистора. Резистор R5 ограничивает ток затвора, его значение можно менять. Дроссель L1 и конденсатор ёмкостью 47n образую фильтр для защиты TL494 от возможных помех, создаваемых драйвером. Индуктивность дросселя, возможно, следует подобрать под ваш диапазон частот. Следует отметить, что тразнисторы S8050 и S8550 выбраны не случайно, так как они имеют достаточную мощность и скорость, что обеспечит необходимую крутизну фронтов. Как видите, схема предельно проста, и, в то же время, функциональна.

Переменный резистор Rt следует выполнить в виде двух последовательно соединённых резисторов – однооборотного и многооборотного, если вам нужна плавность и точность регулировки частоты.

Печатная плата, следуя традиции, нарисована фломастером и вытравлена медным купоросом.

013-plata_generator.jpgВ качестве силового транзистора можно использовать практически любые полевые транзисторы, подходящие по напряжению, току и частоте. Это могут быть: IRF530, IRF630, IRF640, IRF840.

Чем меньше сопротивление транзистора в открытом состоянии, тем меньше он будет нагреваться при работе. Тем не менее, наличие радиатора на нём обязательно.

Собрано и проверено по схеме, которую предоставил flyer.

Только самое главное. Напряжение питания 8-35в (вроде можно до 40в, но не испытывал) Возможность работать в однотактном и двухтактном режиме.

Рабочая частота 1…300кГц.

Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб. Входы – выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер.

Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 – задают частоту внутреннего генератора микросхемы. В двухтактном режиме она делиться на 2.

Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)

Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.

screenshot3535e6fa.jpg

Схема (2)

rscreenshot-r8b0da.jpg

Схема (3)

746c2.jpg

Схема (4)

А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя , с регулировкой напряжения и ограничением тока.

Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются… Саму катушку можно мотать на чем угодно. Размер – в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из “рапыленного железа” зазор уже предусмотрен. Если сердечник Ш-образный – ставим не магнитный зазор, бывают с коротким средним керном – эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности. Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал – берем вольтметр и осцилограф…

Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке.

c04giqimageskut.jpg

Схема (5)

Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора . Компаратор по входам (15);(16) следит за напряжением аккумулятора “донора” и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

xpostk5.jpg

Схема (6)

Двухтактный задающий генератор. Различные варианты исполнения и регулировок. На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу “хитрую” схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально. Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые “корифеи” говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения . Кстати оно удачно использовалось в сварочном инверторе.

zifile-he88.jpg

Схема (10)

43a-3176721443a.jpg

Схема (11)

jpicc1d2a4c.jpg

Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.

Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления – основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием “электронная нагрузка” в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, – зачем состоятельному человеку электронная нагрузка.

ЭН промышленного изготовления, ориентированного на любительский инженерный сектор, мною замечено не было. Значит, опять придется все делать самому. Э-эх… Начнем.

Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?

Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей “лаборатории” электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания – обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).

Особенности импульсного варианта ЭН

Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.

Идея

Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение – проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме.

Итак, что же представляет собой “классическая” (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это – электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.

Схема

qscreenshot-p-517x308.jpg

ЭН собрана на популярных (благодаря большому количеству утилизированных компьютерных БП) компонентах. Схема ЭН содержит генератор с регулируемой частотой и шириной импульсов, термо-и-токовую защиту. Генератор выполнен на ШИМ TL494 .

Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12…15В и током до 2А или от канала +12В проверяемого БП.

На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый – индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор – (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным.

8454948-543x485.jpg

По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.

Николай Петрушов

TL494 (Texas Instruments) – это наверное самый распространённый ШИМ-контроллер, на базе которого создавалась основная масса компьютерных блоков питания, и силовые части различных бытовых приборов. Да и сейчас эта микросхема довольно популярна среди радиолюбителей, занимающихся построением импульсных блоков питания. Отечественный аналог этой микросхемы – М1114ЕУ4 (КР1114ЕУ4). Кроме того ещё разные зарубежные фирмы выпускают данную микросхему с разными названиями. Например IR3M02 (Sharp), KA7500 (Samsung), MB3759 (Fujitsu). Всё это одна и та же микросхема. Возраст её гораздо моложе TL431 . Выпускаться он начала фирмой Texas Instruments где то с конца 90-х – начала 2000-х годов. Давайте-ка вместе попробуем разобраться, что она из себя представляет и что это за “зверь” такой? Рассматривать мы будем микросхему TL494 (Texas Instruments).

И так, для начала посмотрим, что у неё внутри.

Состав.

В её составе имеется: – генератор пилообразного напряжения (ГПН); – компаратор регулировки мертвого времени (DA1); – компаратор регулировки ШИМ (DA2); – усилитель ошибки 1 (DA3), используется в основном по напряжению; – усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока; – стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14; – схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Параметры Мин. Макс. Ед. Изм.
V CC Напряжение питания 7 40 В
V I Напряжение на входе усилителя -0,3 V CC – 2 В
V O Напряжение на коллекторе 40 В
Ток коллектора (каждого транзистора) 200 мА
Ток обратной связи 0,3 мА
f OSC Частота генератора 1 300 кГц
C T Емкость конденсатора генератора 0,47 10000 нФ
R T Сопротивление резистора генератора 1,8 500 кОм
70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания……………………………………………..41В

Входное напряжение усилителя………………………………(Vcc+0.3)В

Выходное напряжение коллектора…………………………..41В

Выходной ток коллектора………………………………………250мА

Общая мощность рассеивания в непрерывном режиме….1Вт

Расположение и назначение выводов микросхемы.

Вывод 1

Вывод 2

Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.

Вывод 3

Вывод 4

Изменяя напряжение на выводе 4, можно задавать фиксированную ширину “мёртвого” времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.

Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано? Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов. То есть если “посадить” вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада – 47,5-48%.

Вывод 5

Вывод 6

Для двухтактного режима работы формула имеет следующий вид;

Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением – цифру 1 необходимо будет поменять на 1,1.

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 8

Вывод 9

Это вывод эмиттера транзистора 1.

Вывод 10

Это вывод эмиттера транзистора 2.

Вывод 11

Это коллектор транзистора 2.

Вывод 12

К этому выводу подсоединяется «плюс» источника питания TL494CN.

Вывод 13

Вывод 14

Это выход стабильного И сточника О порного Н апряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.

Вывод 15

Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).

Вывод 16

Принцип работы микросхемы.

Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и “пощупать” на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.

Самый простой и быстрый способ – собрать всё это на макетной плате. Да, микросхему я поставил КА7500. Вывод “13” микросхемы посадил на общий провод, то есть у нас выходные ключи будут работать в однотактном режиме (сигналы на транзисторах будут одинаковыми), а частота повторения выходных импульсов, будет соответствовать частоте пилообразного напряжения ГПН.

Мы видим, что первый луч поднялся ещё на одно деление вверх, длительность выходных импульсов стала ещё меньше (1/3 от длительности всего импульса), а мёртвое время (время закрытия выходного транзистора) увеличилось до двух третьей. То есть наглядно видно, что логика микросхемы сравнивает уровень сигнала ГПН с уровнем управляющего сигнала, и пропускает на выход только тот сигнал ГПН, уровень которого выше управляющего сигнала.

Чтобы стало ещё понятней – длительность (ширина) выходных импульсов микросхемы будет такой, какой является длительность (ширина) выходных импульсов пилообразного напряжения находящихся выше уровня управляющего сигнала (выше прямой линии на экране осциллографа).

81505766.jpg

Идём дальше, добавляем ещё один вольт на вывод “4” микросхемы. Что мы видим? На выходе микросхемы очень короткие импульсы, по ширине примерно такие же, как и выступающие выше прямой линии верхушки пилообразного напряжения. Включим растяжку на осциллографе, чтобы импульс было лучше видно.

Ну что, давайте попробуем отключить вывод “13” от общего провода и подсоединить его к выводу “14”, то есть переключить режим работы выходных ключей из однотактного в двухтактный. Посмотрим, что у нас получится.

Ну вот, это кратко вся теория и практика, и ничего здесь особо сложного нет, и если Вы поймёте и разберётесь в работе этого ШИМ-а, то Вам не составит никакого труда разобраться и понять работу других ШИМ-ов.

Желаю всем удачи.

</td>

Большая часть современных импульсных блоков питания изготавливается на микросхемах типа TL494, которая является импульсным ШИМ контроллером. Силовая часть изготавливается на мощных элементах, например транзисторах.Схема включения ТЛ494 простая, дополнительных радиодеталей требуется минимум, в datasheet подробно описано.

Варианты модификаций: TL494CN, TL494CD, TL494IN, TL494C, TL494CI.

Так же написал обзоры других популярных ИМС , .

expert480.png

  • 1. Характеристики и функционал
  • 2. Аналоги
  • 3. Типовые схемы включения для БП на TL494
  • 4. Схемы блоков питания
  • 5. Переделка ATX БП в лабораторный
  • 6. Datasheet
  • 7. Графики электрических характеристик
  • 8. Функционал микросхемы

Характеристики и функционал

tl494-shema-vkljuchenija-13-620x375.jpg

Микросхема TL494 разработана как Шим контроллер для импульсных блоков питания, с фиксированной частотой работы. За задания рабочей частоты требуется два дополнительных внешних элемента резистор и конденсатор. Микросхема имеет источник опорного напряжения на 5В, погрешность которого 5%.

Область применения, указанная производителем:

  1. блоки питания мощностью более 90W AC-DС с PFC;
  2. микроволновые печи;
  3. повышающие преобразователи с 12В на 220В;
  4. источники энергоснабжения для серверов;
  5. инверторы для солнечных батарей;
  6. электрические велосипеды и мотоциклы;
  7. понижающие преобразователи;
  8. детекторы дыма;
  9. настольный компьютеры.

Аналоги

tl494-shema-vkljuchenija-16-620x349.jpg

Самыми известными аналогами микросхемы TL494 стали отечественная KA7500B, КР1114ЕУ4 от Fairchild, Sharp IR3M02, UA494, Fujitsu MB3759. Схема включения аналогичны, распиновка может быть другой.

Новая TL594 является аналогом ТЛ494 с повышенной точность компаратора. TL598 аналог ТЛ594 с повторителем на выходе.

Типовые схемы включения для БП на TL494

tl494-datasheet-15-620x515.jpg

Основные схемы включения TL494 собраны из даташитов различных производителей. Они могут служит основой для разработки аналогичных устройств с похожим функционалом.

Схемы блоков питания

Сложные схемы импульсных блоков питания TL494 рассматривать не буду. Они требуют множества деталей и времени, поэтому изготавливать своими руками не рационально. Проще у китайцев купить готовый аналогичный модуль за 300-500руб.

..

При сборке повышающих преобразователей напряжения особое внимание уделяйте охлаждению силовых транзисторов на выходе. Для 200W на выходе будет ток около 1А, относительно не много. Тестирование на стабильность работы проводить с максимально допустимой нагрузкой. Необходимую нагрузку лучше всего сформировать из ламп накаливания на 220 вольт, мощностью 20w, 40w, 60w, 100w. Не стоит перегревать транзисторы более чем на 100 градусов. Соблюдайте правила техники безопасности при работе с высоким напряжением. Семь раз померяй, один раз включи.

Повышающий преобразователь на TL494 практически не требуют настройки, повторяемость высокая. Перед сборкой проверьте номиналы резисторов и конденсаторов. Чем меньше будет отклонение, тем стабильней будет работать инвертор с 12 на 220 вольт.

Контроль температуры транзисторов лучше производить термопарой. Если радиатор маловат, то проще поставить вентилятор, чтобы не ставить новый радиатор.

Блок питания на TL494 своими руками мне приходилось изготавливать для усилителя сабвуфера в автомобиле. В то время автомобильные инверторы с 12В на 220В не продавались, и у китайцев не было Aliexpress. В качестве усилителя УНЧ применил микросхему серии TDA на 80W.

tl494-shema-vkljuchenija-05-620x403.jpg

За последние 5 лет увеличился интерес с технике с электрическим приводом. Этому поспособствовали китайцы, начавшие массовое производство электрических велосипедов, современных колесо-мотор с высоким КПД. Лучшей реализацией считаю двух колёсные и одноколесные гироскутеры.В 2015 году китайская компания Ninebot купила американской Segway и начал производства 50 видов электрических скутеров типа Сегвея.

Для управления мощным низковольтным двигателем требуется хороший контроллер управления.

tl494-shema-vkljuchenija-06-620x354.jpg

Переделка ATX БП в лабораторный

У каждого есть радиолюбителя есть мощный блок питания ATX от компьютера, который выдаёт 5В и 12В. Его мощность от 200вт до 500вт. Зная параметры управляющего контроллера, можно изменить параметры ATX источника. Например повысить напряжение с 12 до 30В. Популярны 2 способа, один от итальянских радиолюбителей.

Рассмотрим итальянский способ, который максимально простой и не требует перемотки трансформаторов. Выход ATX полностью убирается и дорабатывается согласно схеме. Огромное количество радиолюбителей повторили эту схему благодаря своей простоте. Напряжение на выходе от 1В до 30В, сила тока до 10А.

tl494-shema-vkljuchenija-07-620x413.jpg

Datasheet

Микросхема настолько популярна, что её выпускает несколько производителей, навскидку я нашел 5 разных даташитов, от Motorola, Texas Instruments и других менее известных. Наиболее полные datasheet TL494 у Моторолы, который и опубликую.

Все даташиты, можно каждый скачать:

  • Motorola ;
  • Texas Instruments — самый лучший даташит;
  • Contek

Микросхема TL494 представляет собой ШИМ – контроллер, отлично подходящий для построения импульсных блоков питания различной топологии и мощности. Может работать как в однотактном, так и в двухтактном режиме.

Отечественным ее аналогом является микросхема КР1114ЕУ4. Texas Instruments, International Rectifier, ON Semiconductor, Fairchild Semiconductor – многие производители выпускают данный ШИМ-контроллер. У Fairchild Semiconductor он называется, например, KA7500B.

Если просто посмотреть на обозначения выводов, становится ясно, что данная микросхема имеет довольно широкие возможности для регулировки.

Рассмотрим обозначения всех выводов:

  • неинвертирующий вход первого компаратора ошибки
  • инвертирующий вход первого компаратора ошибки
  • вход обратной связи
  • вход регулировки мертвого времени
  • вывод для подключения внешнего времязадающего конденсатора
  • вывод для подключения времязадающего резистора
  • общий вывод микросхемы, минус питания
  • вывод коллектора первого выходного транзистора
  • вывод эмиттера первого выходного транзистора
  • вывод эмиттера второго выходного транзистора
  • вывод коллектора второго выходного транзистора
  • вход подачи питающего напряжения
  • вывод встроенного источника опорного напряжения 5 вольт
  • инвертирующий вход второго компаратора ошибки
  • неинвертирующий вход второго компаратора ошибки

Для примера, если применить конденсатор емкостью 1нФ, а резистор на 10кОм, то частота пилообразного напряжения на выходе 5 составит примерно f = 1.1/(10000*0.000000001) = 110000Гц. Частота может отличаться, по данным производителя, на +-3% в зависимости от температурного режима компонентов.

DSCF10134f.jpg

Вход регулировки мертвого времени 4 предназначен для определения паузы между импульсами. Компаратор мертвого времени, обозначенный на схеме «Dead-time Control Comparator», даст разрешение выходным импульсам, если напряжение пилы выше напряжения, подаваемого на вход 4. Так, подавая на вход 4 напряжение от 0 до 3 вольт, можно регулировать скважность выходных импульсов, при этом максимальная длительность рабочего цикла может составлять 96% в однотактном режиме и 48%, соответственно, в двухтактном режиме работы микросхемы. Минимальная пауза здесь ограничена значением 3%, которое обеспечивается встроенным источником с напряжением 0.1 вольта. Вывод 3 также имеет значение, и напряжение на нем так же играет роль для разрешения импульсов на выходе.

Максимальный ток для каждого из выходных транзисторов микросхемы (выводы 8,9,10,11) составляет 250мА, однако производитель не рекомендует превышать 200мА. Соответственно, при параллельной работе выходных транзисторов (вывод 9 соединен с выводом 10, а вывод 8 соединен с выводом 11) максимально допустимый для ток составит 500мА, но лучше не превышать 400мА.

TL 494 и ее последующие версии – наиболее часто применяемая микросхема для построения двухтаткных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) – ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN – корпус DIP16, -25..85С, TL 494 CN – DIP16, 0..70C).
  • К1006ЕУ4 – отечественный аналог TL494
  • TL594 – аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 – аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал – обобщение на тему оригинального техдока (ищите документ slva001a.pdf на www.ti.com – далее ссылка “TI”), публикаций (“Силовые полупроводниковые приборы International Rectifier”, Воронеж, 1999) и Motorola , опыта друзей-самодельщиков и самого автора. Следует сразу отметить, что точностные параметры, коэффициент усиления, токи смещения и прочие аналоговые показатели улучшались от ранних серий к более поздним, в тексте – как правило – используются наихудшие, ранних серий параметры. Вкратце, у почтеннейшей микросхемы есть и недостатки, и достоинства.

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (не критично в автомобильных ПН)
  • Минус: Cинхронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности ИС

Цепи ИОНа и защиты от недонапряжения питания . Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого “стабилизатора” напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0…+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1…500кОм, Ct=470пФ…10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания – в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или – замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера – время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки – фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений – от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор – например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше – логическое И сигналов нормальных состояний).

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей – фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз – разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами – При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) – разрешается выход схемы. При сбросе генератора из максимума в ноль – выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 – подаются парафазно на каждый выход порознь.

Выходные транзисторы – npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) – 1.5В (типовое при 200 мА), а в схеме с общим эмиттером – чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл – 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).

Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана – см. “Блок питания усилителя Jensen”). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС – заперт диод, транзистор открывается и разряжает затвор на землю. Минус – работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды – любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. “Земля” повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать – зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор – IRFI1010N – имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтобы обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

При тактовой частоте 100 кГц и суммарной скважности 80% каждое плечо работает в режиме 4 мкс открыто – 6 мкс закрыто. Предположим, что длительность каждого фронта импульса должна быть не более 3% открытого состояния, т.е. tф=120 нс. Иначе резко возрастают тепловые потери на ключе. Таким образом, минимально приемлемый средний ток заряда Ig+=60 нКл/120 нс = 0.5А, ток разряда Ig-= 90нКл/120нс=0.75А. И это без учета нелинейного поведения емкостей затвора!

Сопоставляя требуемые токи с предельными для TL494, видно, что ее встроенный транзистор будет работать на предельном токе, и скорее всего не справится со своевременным зарядом затвора, так что выбор делается в пользу комплементарного повторителя. При меньшей рабочей частоте или при меньшей емкости затвора ключа возможен и вариант с разрядником.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение – индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) – миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не “земляной” провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада – в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).

В правой части схемы – два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это “мягкий старт”. При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки – ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 – не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) – но это именно выключение, а не плавное ограничение.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий