Содержание
Главная страница > Справочник > Комплектующие и радиодетали > Транзистор
назад
Справочная информация по перечню и количеству содержания драгоценных металлов в изделии: Транзистор П201.
Данные взяты из открытых источников: документации к изделию, формуляров, технической литературы, нормативной документации.
Приводится точная масса содержания драгметаллов: золота, серебра, платины и металлов платиновой группы (МПГ) на единицу изделия в граммах.
Золото : 0 Серебро : 0,00313 Платина : 0 МПГ : 0,00628 (In) Примечание : по справочнику: “Справочник по содержанию драгоценных металлов в изделиях и элементах общепромышленного назначения. Утвержден приказом главнокомандующего 1985г. №123. -М.: Министерство Обороны СССР, 1986” |
Категории справочника
Транзистор П201-203 Справочник содержания драгоценных металлов в радиодеталях основанный на справочных данных различных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
Радиодетали могут содержать золото, серебро, платину и МПГ (Металлы платиновой группы, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ)
Транзистор, полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.
Существует два основных типа транзисторов: биполярные и полевые.
1. Биполярные транзисторы. Они являются, вероятно, более распространенным типом (именно о них, например, шла речь в предыдущих разделах этой главы). В базу такого транзистора подается небольшой ток, а он, в свою очередь, управляет количеством тока, протекающего между коллектором и эмиттером. 2. Полевые транзисторы. Имеют три вывода, но они называются затвор (вместо базы у биполярного), сток (вместо коллектора) и исток (вместо эмиттера). Аналогично воздействие на затвор транзистора (но на этот раз не тока, а напряжения) управляет током между стоком и истоком. Полевые транзисторы также имеют разную полярность: они бывают N-канальные (аналог NPN-биполярного транзистора) и Р-канальные (аналог PNP).
Обозначение транзисторов до 1964 года Первый элемент обозначения – буква П, означающая, что данная деталь и является, собственно, транзистором. Биполярные транзисторы в герметичном корпусе обозначались двумя буквами – МП, буква М означала модернизацию. Второй элемент обозначения – одно, двух или трехзначное число, которое определяет порядковый номер разработки и подкласс транзистора, по роду полупроводникового материала, значениям допустимой рассеиваемой мощности и граничной(или предельной) частоты. От 1 до 99 – германиевые маломощные низкочастотные транзисторы. От 101 до 199 – кремниевые маломощные низкочастотные транзисторы. От 201 до 299 – германиевые мощные низкочастотные транзисторы. От 301 до 399 – кремниевые мощные низкочастотные транзисторы. От 401 до 499 – германиевые высокочастотные и СВЧ маломощные транзисторы. От 501 до 599 – кремниевые высокочастотные и СВЧ маломощные транзисторы. От 601 до 699 – германиевые высокочастотные и СВЧ мощные транзисторы. От 701 до 799 – кремниевые высокочастотные и СВЧ мощные транзисторы.
Обозначение транзисторов после 1964 года
Первый символ необходим для обозначения типа используемого материала Буква Г или цифра 1 – германий. Буква К или цифра 2 – кремний. Буква А или цифра 3 – арсенид галлия.
Второй символ обозначает тип транзистора П – полевой транзистор Т – биполярный транзистор
Третий символ необходим для обозначения мощности и граничной частоты 1 – транзисторы маломощные(до 0,3 ватт) низкочастотные(до 3 МГц). 2 – транзисторы маломощные(до 0,3 ватт) средней частоты(до 30 МГц). 3 – транзисторы маломощные(до 0,3 ватт) высокочастотные. 4 – транзисторы средней мощности(до 1,5 ватт), низкочастотные(до 3 МГц). 5 – транзисторы средней мощности(до 1,5 ватт),средней частоты(до 30 МГц). 6 – транзисторы средней мощности(до 1,5 ватт),высокочастотные и СВЧ. 7 – транзисторы мощные(свыше 1,5 ватт), низкочастотные(до 3 МГц). 8 – транзисторы мощные(свыше 1,5 ватт), средней частоты(до 30 МГц). 9 – транзисторы мощные(свыше 1,5 ватт), высокочастотные и СВЧ.
Четвертый и пятый элементы обозначения – определяют порядковый номер разработки.
Изменения в маркировке вступившие в силу в 1978 году. Изменения коснулись обозначения функциональных возможностей – третьего элемента.
15:18 Зарядное устройство на тиристоре с защитой. Схема и описание. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Предлагаю вашему вниманию простое зарядное устройство с использованием тиристора, которое под силам собрать своими рукамидаже начинающему радиолюбителю. Его можно использовать как самостоятельное устройство, так и в дополнение к существующему зарядному устройству, так как в схеме реализовано несколько типов защит. Имеется защита от короткого замыкания, так как без подключённого аккумулятора на выходе отсутствует выходное напряжение. Так же устройство не выйдет из строя при неправильном подключении батареи, транзистор откроет тиристор только при правильном подключенииаккумулятора. Трансформатор берём готовый или мотаем сами, мощностью 150-200 ватт, вторичная обмотка с напряжением 16-19 вольт. Вместо указанных на схеме тиристора и транзистора можно поставить соответственно КУ202 с любым буквенным индексом и КТ815. Резистором R4 подбирают минимальное напряжение включения зарядки, схема рассчитана на аккумуляторную батарею 12 вольт. Перед включением обязательно проверить правильность монтажа. Рекомендую, отличная вещь против ошибок. По желанию, на выходе схемы к АКБ, можно добавить вольтметр и амперметр. Вольтметр подключается параллельно нагрузке, а амперметр последовательно, через линию “+”. Диодный мост рекомендую выполнить на диодах Д242
Аналоги транзистора КТ815Транзистор КТ 815 возможно заменить на отечественный аналог: КТ8272, КТ961, либо на его зарубежный аналог: BD135, BD137, BD139, TIP29A Параметры КТ815 транзистора
Диод Д242, ПараметрыОсновные технические характеристики диодов Д242, Д242А, Д242Б:
Аналоги тиристора КУ 202Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А. Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить. Параметры тиристора КУ 202
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
–>Марка–>:Схемы электрооборудования | –>Просмотров–>:11460 | | | |
–>
MUMahidilhan Usubjanova
скажите пожалуйста чем можно заменить транизстор п401 или откуда его можно выкопать (не купить) если можно заменить то возможно его заменить на мп25а? схема
2.8.6 преобразователь п-201
Преобразователь промышленный П-201 представляет собой устройство для преобразования ЭДС чувствительных элементов, применяемых для измерения активности одновалентных и двухвалентных анионов и катионов, в том числе и ионов водорода (величины рН) в унифицированный выходной сигнал постоянного тока (рис. 46).
Преобразователь рассчитан для работы с любыми серийно выпускаемыми чувствительными элементами. Например: Дпг-4М, ДМ-5М, ЭЧПг-4, ЭЧМ-5А и др.
На заводе преобразователи настраиваются на диапазон измерения от 2 до 12 рН с координатами изопотенциальной точки: рН=7 и Ен = минус 50мВ.
Преобразователь имеет выходы по напряжению и току для подключения самопишущих потенциометров с пределами измерения от 10 до 100 мВ (например, КСП2, КСП4 и др.).
Пределы выходных сигналов постоянного тока и сигналов напряжения постоянного тока:
– нижний предел – 0mA (мВ);
– верхние пределы:
– по постоянному току 5мА для нагрузок с сопротивлением не более 2,5кОм;
– по напряжению постоянного тока – регулируемый от 10 до 100 мВ для нагрузок с сопротивлением от 200оМ и более.
Схема измерения и регистрации рН раствора с использованием П-201 приведена на рис. 46.
Предел допустимой основной приведенной погрешности: – по выходным сигналам постоянного тока и напряжения постоянного тока – 1%; по показывающему прибору – 2%.
Устройство и работа преобразователя
При измерении рН растворов используется система, состоящая из измерительного и вспомогательного электродов (рис. 47).
В качестве измерительного электрода используется стеклянный электрод, в качестве вспомогательного – хлорсеребрянный.
Измерительный электрод при погружении в контролируемый раствор развивает ЭДС, линейно зависящий от активности ионов в растворе и его температуры.
Контакт вспомогательного электрода с контролируемым раствором осуществляется с помощью электролитического ключа, обеспечивающего нетечение насыщенного раствора KCl в контролируемый раствор.
Рис. 46 Схема использования преобразователя П-201 в системе регулирования, измерения и регистрации.
Рис. 47 Схема электродной системы.
Раствор хлористого калия (KCl) непрерывно просачивается через электролитический ключ, предотвращая проникание из контролируемого раствора в систему хлорсеребрянного электрода посторонних ионов, которые могли бы изменить величину ЭДС этого электрода. Измеряемая часть ЭДС электродной системы определяется потенциалом только измерительного электрода. С помощью высокоомного измерительного преобразователя ЭДС электродной системы преобразуется в выходной ток, измеряемый миллиамперметром, отградуированным в единицах рН.
Работа преобразователя показана на схеме, поясняющей принцип действия преобразователя, которая приведена на рис. 48.
Преобразователь представляет собой усилитель постоянного тока, охваченный глубокой отрицательной обратной связью по выходному току, чем и обеспечивается высокое входное сопротивление. Усилитель построен по схеме преобразователя постоянного напряжения в переменное с последующей демодуляцией.
Рис. 48 Схема упрощенная измерительная преобразователя.