Симисторные ключи переменного тока на moc3062m

Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из Арсенид-гелиевого инфракрасного светодиода, соединенного посредством оптического канала м двунаправленным кремневым переключателем. Последний может дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения и размещенной на том же кремниевом кристалле.

46986056.pngЭти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности. Подобные оптопары были задуманы для осуществления связи между логическими элементами с малым уровнем напряжения (например, вентиль TTL) и нагрузкой, питаемой сетевым напряжением (110 или 220 вольт).

Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами.

Внутренняя структура оптосимисторов. Существует два типа оптосимистор с детектором нуля и без детектора. Оптосимистор с детектором нуля может быть использован в качестве реле для высокого напряжения. При использовании простого оптосимистора можно реализовать диммер для управления освещением.

Ниже приведена таблица, все выбранные оптроны отличаются минимальным гарантированием током управления и максимальным рабочим напряжением.

Ift Тип Тип Тип Тип Тип Тип
20 MOC3010 MOC3021 MOC3031 MOC3041 MOC3061 MOC3081
10 MOC3011 MOC3012 MOC3032 MOC3042 MOC3062 MOC3082
05 MOC3012 MOC3013 MOC3033 MOC3043 MOC3063 MOC3083
Напряжение питания 110/120 В 220/240 В 110/120 В 220/240 В 220/240 В 220/240 В
Обнаружение нуля НЕТ НЕТ ДА ДА ДА ДА
Vdrm 250 В 400 В 250 В 400 В 600 В 800 В

В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе ( VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения. Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF). У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.

Предельно допустимые характеристикиМаксимально допустимый ток через светодиод в непрерывном режиме — не более 60ма. Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада — не более 1 А. Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т — 25˚С).

Типовая схема подключения:

03224456.jpgД аташит MOC301x и MOC304x

Сопротивление Rd57821143.jpgРасчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V — 1,5) / IF. Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF — 20 мА с учетом снижения эффективности светодиода в тече­ние срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем: Rв = (4,7 — 1,5) / 0,02 = 160 Ом. Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.

Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca. Для МОС3020 максимальное значение dV / dt — 10 В/мкс. Таким образом: Сa = 311 / (470 х 107) = 66 нФ. Выбираем: Сa = 68 нФ.

Расчет сопротивления R.

Для выше указанных оптопар максимальной допустимый ток 1 А.

Минимальное сопротивление резистора R:

Rmin=220 В * 1,44 / 1 А = 311 Ом.

С другой стороны слишком большое сопротивление может привести к нарушению работы схемы (будет перебои с включением силового симистора).

Поэтому принимаем сопротивление из стандартного ряда R=330 или 390 Ом.

Расчет сопротивления Rg.

Резистор Rg необходим, только в случаи высокочуствительного управляющего электрода симистора. И обычно может составлять от 100 Ом до 5 кОм. Я рекомендую ставить 1 кОм.

ЗащитаНастоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах. Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, — желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный). Если используется модель без обнаружения нуля, то snubber-цепочка Ra — Сa обязательна.

Описание и параметры MOC3061, MOC3062, MOC3063. Применение в тиристорных схемах коммутации переменного напряжения. (10+)

Оптроны MOC3061, MOC3062, MOC3063. Характеристики, применение

Оптроны MOC3061, MOC3062, MOC3063 представляют собой идеальный элемент для оптической гальванической развязки (изоляции) низковольтной управляющей части схемы и силового тиристорного ключа. Они рассчитаны на напряжение между низковольтной и высоковольтной частями 7500 В. Максимальное напряжение в закрытом состоянии 600 В. Их конструктивное исполнение позволяет обеспечить расстояние между дорожками низковольтной и высоковольтной частей на печатной плате в соответствии со стандартами США, Евросоюза, России и других стран. Так что они подходят для использования в схемах коммутации сетевого напряжения.

Читайте также:  Электросчетчик меркурий 230 срок поверки

Устройство MOC3061, MOC3062, MOC3063

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Оптрон представляет собой изолированные друг от друга низковольтную и высоковольтную части, связанные оптически. Низковольтная часть представляет собой светодиод. Высоковольтная часть состоит из фототиристора и детектора нуля (Z – на схеме). Детектор нуля обеспечивает невозможность открытия тиристора при напряжении на нем больше определенного значения. Это гарантирует минимальные помехи, броски тока и коммутационные потери. Схемы с применением этих оптопар включаются только в момент, когда переменное напряжение достигает нулевого значения. Если на выводы 1, 2 подан открывающий ток, то оптрон откроется только в начале следующего полупериода.

Это свойство MOC3061, MOC3062, MOC3063 очень полезно в переключающих схемах, где нужно сначала отключить одну цепь, а потом, включить вторую (например, при переключении обмоток трансформатора в стабилизаторах напряжения). Если одновременно отключить управляющий ток от одного оптрона и подать на другой, то первый закроется в конце полупериода, а второй откроется в начале следующего, что обеспечит переключение в момент нулевого напряжения.

Параметры MOC3061, MOC3062, MOC3063

Низковольтная часть тиристорного оптрона

Максимально допустимое напряжение между входной и выходной частью: 7500 В переменного тока при частоте 50 Гц, время воздействия 1 секунда. Так что данная схема исключает пробой даже в случае очень сильных скачков напряжения в сети.

Максимальное обратное напряжение на светодиоде: 6 В.

Максимальное прямое напряжение: 1.5 В.

Максимальный прямой ток светодиода: 60 мА.

Минимальный ток включения (ток через светодиод, при котором происходит включение оптотиристора): MOC3061 – 15мА, MOC3062 – 10мА, MOC3063 – 5 мА.

Высоковольтная часть тиристорной оптопары

Максимальное напряжение в закрытом состоянии: 600 В.

Импульсный ток: 1 А при длительности меньше 100 мкс.

Максимальное напряжение в открытом состоянии: 3 В.

Максимальный постоянный ток в открытом состоянии: 50 мА.

Ток удержания (минимальный ток, при котором тиристор не закрывается): мкА.

Время включения: 1 мкс. Время выключения 10 мкс. Данные приблизительные, в справочнике не приводятся, получены нами в результате измерения на одном экземпляре.

Напряжение, при котором возможно открытие фототиристора: 5 – 20 В. Этот параметр имеет большой технологический разброс и сильно зависит от тока через светодиод. Если напряжение превышает указанное значение при соответствующем входном токе, то тиристор не открывается. Это происходит за счет работы схемы детектора нуля.

Выбирать режим работы оптопары следует так, чтобы управляющий ток был на 10% – 15% выше минимального тока включения. Тогда включение будет происходить только при минимальном значении напряжения на фототиристоре. Увеличение управляющего тока приводит к рассеиванию дополнительной мощности и увеличению напряжения, при котором возможно включение фототиристора, что нежелательно.

Особенности применения

Оптроны выпускаются в пластмассовых корпусах с шестью выводами. Вывод 1 помечен точкой на корпусе.

Производитель рекомендует включать последовательно с фототиристором в схемах управления силовыми тиристорами резистор 360 Ом для удержания тока через высоковольтную часть оптрона на безопасном уровне. Но эта рекомендация представляется странной, так как оптрон может открываться только, если напряжение вблизи нулевого значения (меньше 20 В или около того). Чтобы обеспечить безопасное значение силы тока потребуется резистор всего в 20 Ом при условии, что время открывания силового тиристора меньше 100 мкс. Ведь после открывания силового тиристора напряжение на оптотиристоре оптрона падает до минимального значения. Для распространенных силовых тиристоров, например, КУ201, КУ202, время открывания составляет 10 – 20 мкс.

Последнее замечание представляется важным, так как позволяет использовать эти оптопары с распространенными силовыми тиристорами, для которых 360 Ом – слишком большое сопротивление, не позволяющее обеспечить открывание силового тиристора в самом начале полуволны с минимальной задержкой. Для силовых тиристоров имеет смысл выбирать этот резистор равным резистору, соединяющему управляющий электрод и катод, который в свою очередь обычно выбирается 50 – 100 Ом.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

При автоматизации дома или квартиры необходимо управлять электрическими приборами работающими от напряжения 220 вольт. К сожалению контроллер arduino не может коммутировать такое большое напряжение на прямую. Необходим посредник. Первое что приходит на ум — РЕЛЕ.

У данного способа есть и плюсы и минусы. К плюсам можно отнести гальваническую развязку, возможность коммутировать все, что душе угодно (постоянный или переменный ток, любое напряжение до 250 вольт)

Минусы — дребезг контактов и щёлкает. Не такой большой минус, но он есть.

Как я не раз уже говорил: “Главное — это семья!” и если кому-то из близких не комфортно, необходимо постараться исправить.

После заявления родных о том, что “что-то там щёлкает и пугает…” решил собрать полупроводниковый ключ переменного напряжения. На просторах интернета не составило труда найти подробное описание и схему данного устройства.

Главные действующие герои ключа переменного напряжения — симистор и оптопара.

Симистор сам по себе уже является ключом переменного напряжения, но для управления симистором мы будем использовать оптопару, для того что бы обеспечить гальваническую развязку.

Рассматривая различные варианты я решил взять оптопару MOC3063. Дело в том, что она с детектором перехода нуля коммутируемого напряжения. Другими словами симистор будет открываться и закрываться в тот момент когда синусоида проходит через ноль. Данное свойство позволит продлить жизнь коммутируемым приборам…

Но хватит ходить вокруг да около.

%D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%81%D1%85%D0%B5%D0%BC%D0%B01.jpg

Исходя из своих потребностей решил делать двух канальный ключ.

%D0%B4%D0%B2%D1%83%D1%85%D0%BA%D0%B0%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9-%D0%B2%D1%8B%D0%BA%D0%BB.jpg

скачать PDF или в формате SprintLayout6 скачать

скачать программу для редактирования печатных плат SprintLayout6

Изготовил плату старым добрым способом «лазерного утюга» (ЛУТ). Только вместо утюга был использован ламинатор.

Стоимость деталей:

  1. оптопара MOC3063 — 38 руб. х2 шт.
  2. симистор BT138-600 — 30 руб. х2 шт.
  3. резисторы 6 шт. по рублю.
  4. кусок стеклотекстолита фольгированного — бесплатно (ориентировочно 10-15 руб.)
  5. клемники — можно считать бесплатными т.к. уже давно купил их 100500 штук.
  6. хлорное железо, припой и паяльник не считаем.

Читайте также:  Микроволновка то греет то нет

Итого около 150 руб.

Плюсы:

  1. полезно для коммутируемых устройств
  2. гальваническая развязка
  3. БЕСШУМНО!

Минусы:

  1. только переменное напряжение

Фото того, что получилось:

Поделиться ссылкой:

Понравилось это:

Похожее

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

55 мыслей про “ Управление нагрузкой 220 вольт БЕЗ реле! ”

Здравствуйте, автор! Объясните пожалуйста такой момент. По даташиту на BT138-600 максимально допустимое напряжение управляющего электрода (Ugm) равно 5В. А в вашей схеме на управляющий электрод симистра BT138-600 через резистор 200 Ом и оптосимистор MOC3063 подаётся напряжение питающей сети 220В. Как такое возможно? Или я что-то недопонимаю?

Если поменять МОС 3063 на МОС3041 элементная схема изменится? И еще, скачала схему, но почему то она не открывается в моем 6-м спринте.

Имею ввиду диммировать можно напряжение? через MOC3063, у него же вроде есть детектор нуля и не нужно ставить дополнительно что-то типа PC814. Если я правильно понимаю.

Евгений, Добрый день! О каком ШИМ Вы спрашиваете.

Ответьте пожалуйста, будет ли работать ШИМ от 3-х вольтовой логики?

У меня стоят по 0,25 Вт. Но R2 и R3 желательно мощнее.

Автор, подскажи, какой мощности резюки?

Можно, только у еспшки на выходе 3,3 вольта, но я думаю что работать будет.

Здравствуйте подскажите можно использовать для esp?

А вы телевизор или магнитофон пробовали включать?

Замерял 12 ампер не каждом тенне.

Не подскажите какой семистор лучше выбрать. Нагрузка 3 х 3000 ватт. Три тенна по три киловатта на 220 вольт.

Заранее большое спасибо

Хорошая схемка, сохраню себе, добавил бы только контроль положения симистора

Круто. А от ШИМ сигнала схема работать будет?

Здравствуйти!это действительно 500 кОм сопротивление в цепи 1 и 3 вывода симистора?а то чтото не работает….

Здравствуйте. а будет эта схема работать от сигнала термопары?

Да конечно, какая разница откуда придёт управляющий сигнал? Хоть банальную кнопку поставьте или концевик какой-нибудь…

А! Ну хорошо! Без каких нить переделок пойдет к PIR датчику, который выдает лог +5 на событие, только R1 подобрать на ток 5ма? так ведь?))

Здравствуйте! Я только начинаю разбираться в данной сфере, прошу помощи. В приведенной схеме используется MOC3063, такую штуку я у себя в регионе достать не могу (выписал через интернет), но у меня есть PC817. Можно-ли с помощью данной оптопары организовать такую схему? Если можно (нет), то расскажите, пожалуйста, мне для обучения не хватает простого человеческого объяснения.

Твердотельное реле не устраивает ценой прежде всего, а обычное щёлкает и подгорает, поэтому и ищу альтернативные варианты. Подскажите куда поставить фильтр или как развесим на плате?

Я думаю, что можно, но теплый пол это ещё и не слабая индуктивный нагрузка. Нужно в схему добавить RC фильтр. А чем не устраивает классический способ управления реле?

Здравствуйте. Подскажите можно ли с этой схемой использовать BTA25? Нужно управлять тёплыми полами через ардуину и эту платку! Будет работать?

Добрый день. Как я уже писал в этой статье, нашел схему на просторах интернета. По информации от туда же резисторы R2 и R3 рассчитаны на 1Вт. Хочу заметить, что я делал на smd компанентах «1206» которые на 0,25 Вт и все работало. Резисторы не грелись.

Уважаемый автор,поясни пожалуйста. на какой максимальный ток расчитаны резисторы r2,r3? хочу применить SMD компоненты.

А почему не попробовать использовать тиристор который написан в статье? У 138 и 139 разница по току управления 0,025 против 0,1. Мне кажется в этом причина.

О, мой комент удалили! Я вроде по теме спрашивал

а можно пример с вашей схемой и internet контроллером?

Читайте также:  Какие цвета бывают у профнастила

В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе ( VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

1) 15А без радиатора? — ну Серега ты жжешь!

2) Таб (металлический) для соединения с радиатором 1-го и 2-го симистора на фото готовой платы касаются друг друга, а как насчет К.З.? Поясняю, если один симистор полностью открыт/закрыт, а второй полуоткрыт, при касании табов обоим симисторам — КИРДЫК!(Дай бог, чтоб пожара не было, а то умный дом можно будет потом лопатой откидывать :))

3) По даташиту на оптосимистор резисторы должны быть 390 Ом (к симистору). Надо смотреть типовую схему включения, там же все пояснено! 200 Ом резистор на входе оптопары — у тебя контроллер 3-х Вольтовый или 5 Вольтовый? Пояснений на входные сигналы нет. Входной ток оптопары в среднем должен быть средним. Будет малым — ненадежно будет открываться симистор, большим — или перегрузка и выход деталей или срок жизни устройства будет зависеть от качества комплектующих и запаса их прочности.

Прошу прощения за задержку со статьёй… Она готова, только не хватает иллюстраций и схем 🙂

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий